Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 12: 656350, 2021.
Article in English | MEDLINE | ID: covidwho-1191682

ABSTRACT

The new SARS-CoV-2 virus differs from the pandemic Influenza A virus H1N1 subtype (H1N1pmd09) how it induces a pro-inflammatory response in infected patients. This study aims to evaluate the involvement of SNPs and tissue expression of IL-17A and the neutrophils recruitment in post-mortem lung samples from patients who died of severe forms of COVID-19 comparing to those who died by H1N1pdm09. Twenty lung samples from patients SARS-CoV-2 infected (COVID-19 group) and 10 lung samples from adults who died from a severe respiratory H1N1pdm09 infection (H1N1 group) were tested. The tissue expression of IL-8/IL-17A was identified by immunohistochemistry, and hematoxylin and eosin (H&E) stain slides were used for neutrophil scoring. DNA was extracted from paraffin blocks, and genotyping was done in real time-PCR for two IL17A target polymorphisms. Tissue expression increasing of IL-8/IL-17A and a higher number of neutrophils were identified in samples from the H1N1 group compared to the COVID-19 group. The distribution of genotype frequencies in the IL17A gene was not statistically significant between groups. However, the G allele (GG and GA) of rs3819025 was correlated with higher tissue expression of IL-17A in the COVID-19 group. SARS-CoV-2 virus evokes an exacerbated response of the host's immune system but differs from that observed in the H1N1pdm09 infection since the IL-8/IL-17A tissue expression, and lung neutrophilic recruitment may be decreased. In SNP rs3819025 (G/A), the G allele may be considered a risk allele in the patients who died for COVID-19.


Subject(s)
COVID-19 , Gene Expression Regulation/immunology , Interleukin-17 , Interleukin-8 , Lung/immunology , Neutrophils/immunology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophils/pathology , Neutrophils/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
2.
Transl Res ; 231: 55-63, 2021 05.
Article in English | MEDLINE | ID: covidwho-939331

ABSTRACT

Although some evidence showed the activation of complement systems in COVID-19 patients, proinflammatory status and lectin pathway remain unclear. Thus, the present study aimed to demonstrate the role of MBL and ficolin-3 in the complement system activation and compared to pandemic Influenza A virus H1N1 subtype infection (H1N1pdm09) and control patients. A total of 27 lungs formalin-fixed paraffin-embedded samples (10 from H1N1 group, 6 from the COVID-19 group, and 11 from the control group) were analyzed by immunohistochemistry using anti-IL-6, TNF-alfa, CD163, MBL e FCN3 antibodies. Genotyping of target polymorphisms in the MBL2 gene was performed by real-time PCR. Proinflammatory cytokines such as IL-6 and TNF-alpha presented higher tissue expression in the COVID-19 group compared to H1N1 and control groups. The same results were observed for ICAM-1 tissue expression. Increased expression of the FCN3 was observed in the COVID-19 group and H1N1 group compared to the control group. The MBL tissue expression was higher in the COVID-19 group compared to H1N1 and control groups. The genotypes AA for rs180040 (G/A), GG for rs1800451 (G/A) and CC for rs5030737 (T/C) showed a higher prevalence in the COVID-19 group. The intense activation of the lectin pathway, with particular emphasis on the MBL pathway, together with endothelial dysfunction and a massive proinflammatory cytokines production, possibly lead to a worse outcome in patients infected with SARS-Cov-2. Moreover, 3 SNPs of our study presented genotypes that might be correlated with high MBL tissue expression in the COVID-19 pulmonary samples.


Subject(s)
COVID-19/pathology , Lectins/metabolism , Lung Injury/metabolism , Lung Injury/pathology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Autopsy , Case-Control Studies , Complement Activation/physiology , Cytokines/genetics , Cytokines/metabolism , Female , Genotype , Humans , Immunohistochemistry , Influenza A Virus, H1N1 Subtype , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/pathology , Lung/virology , Lung Injury/virology , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL